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Abstract 

Primordial gravit&mal waves ye created during the de Sitter phase of an 
exponentially-expanding (tiationary) universe, due to quantum zero-point 
ncuum fluctuation The wavea prodnce fluctuations in the temperature of 
the Cosmic Background B.adiation (CBR). We calculate the multipole rnw 
meats of the correlation function for these temperature fluctuations in a 
spatially-closed F%dmaa-Rob&son-Waker (FRW) cosmological model. The 
reaulb M compared to the corresponding multipoles in the spatially-flat case. 
The differences are small tmlesa the density parameter today, &,, is greater 
than 2. 

PACS numbers: 98.8O.Cq, 98.80X, 98.80&s 
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I. INTRODUCTION 

In5ationary models of the early universe contain a well-studied mechanism which creates 
primordial fluctuations. The fluctuations originate as quantum-mechanical zeropoint flue- 
tuations during the exponentially-expanding de Sitter phase. By a process which may be 
variously described as particle (gaviton) production, non-adiabatic amplification, or super- 
radiant scattering, these 5uctuatione become large in the present epoch. As the universe 
expands, these perturbations are redshifted to longer wavelengths and amplified; during 
the present epoch these perturbations typically persist over a range of wavelengths 1 from 
10-r’ cm c X < IO2 cm. For a review of perturbations in inflationary models, see Kolb and 
Turner [I]. 

The perturbations of the gravitational field may be decomposed into scalar, vector and 
tensor components. The tensor perturbations considered in this paper may be thought of 
as gravitational waves in a classical description, or as spin-two gravitons in the quantum 
mechanical description used in the present work. The modes of interest have present-day 
frequencies in the range from lo- ” 
numbers. 

Hz to 10-r’ Hz and have extremely large occupation 
Hence they may also be thought of as classical gravitational wave% - the two 

descriptions coincide. The gavikm are created during the de Sitter phase of rapid expansion 
by the mechanism originally proposed by Parker; the same mechanism creates particles near 
a black hole or in any other region where the spacetime curvature is large and particle 
creation is not forbidden by global symmetries or conservation laws. A simple calculation 
showing how a potentially-observable spectrum of gavitons is created in infiation is given 
by Allen (21. 

The tensor perturbations of the gravitational field produce temperature 5uctuations in 
the CBR, via the Sachs-Wolfe effect. The expected values of the resulting temperature 
5uctuations are described by the angular correlation function 

C(7) E (op+qll) = g ‘2’4t; ‘)(e;)s(cos7). U-1) 

Here 6T/T(Q) is the fractional temperature fluctuation in the CBR at point R on the 
observer’s celestial sphere, 7 is the angle between R and R’, and the quantum expectation 
value is evaluated in the initial state of the universe. The multipole moments (a:) are 
generally used to describe C(7). 

In a recent paper [3] the expected multipole moments (a:) due to tensor Perturbations 
are calculated in a spatially 5at k = 0 FRW in5ationary model. That paper contains a 
detailed review of previous work on this problem, a comprehensive description of the physical 
motivation, and a detailed and self-contained %&-principles” calculation. The present work 
repeats that calculation in the spatially-closed (k = +I) case. The only previous work on 
tensor perturbations in the spatially-closed case is that of Abbott and Schaefer (41. Note 
that the angle brackets around a: serve as a reminder that we are calculating the ezpectcd 
or ezpectafion r&es of these multipole moments, not necessarily the values that they might 
have in any given realization of the universe. 

The calculation in this paper follows the previous work by Allen and Koranda (31 very 
closely. In the present work, we will assume that the reader is familiar with that earlier 
paper, and present only the bare minimum of detail required to generalize the work to 
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the k = +1 c-aae. In Section II we present the k = +l cosmological model and Skis- 
Wolfe effect. Section III gives the form of the metric perturbation operator for linearized 
gravitational fluctuations. Section IV combines these results to obtain an analytic form 
for the multipole moments (of). Section V details the method by which these multipole 
moments were evaluated numerically, and Section VI outlines the results and conclusions of 
that numerical study. 

Throughout this paper, we use units where the speed of light c = 1. However for clarity 
we have retained Newton’s gravitational constant G and Planch’s constant fi explicitly. We 
choose function branches so that & 10 and arcsin(z) E [-x/2, x/2]. 

II. THE BACKGROUND SPACE-TIME AND THE SACHS-WOLFE EFFECT 

The apacetime considered here has the topology R x S3 of the static Einstein cylinder, 
and is covered by coordinates z” = t, zr = x, z ’ = 0, z3 = q5 with the ranges x,0 E [O, x], 
and 4 E [0,2x). The time coordinate t ranges over a connected open subset of the real line, 
which we will specify below. The spatial coordinates cover a three-sphere of radius a(t); we 
refer to this function as the cosmological scale factor. The metric of the spacetime is given 
by 

da= = G(t) (-dt’ + dx’ + sins x(dP + sin’ 8dqP) + hij(t,X, 0, B)dz’dz’). (2.1) 

The metric perturbation hij is assumed to be small; in its absence the spacetime metric is 
that of a homogeneous and isotropic k = +I FRW model. With our choice of gauge for the 
tensor metric perturbations, the indices i, j = 1,2,3 run only over the spatial coordinates. 

In order to completely specify the cosmological model, we need to define the cosmological 
scale-factor a(t). The cosmological model is completely defined by the free parameters given 
in Table I. Note that we have assumed that the universe is currently expanding, since. we 
require Ho to be positive. The density parameter 

SXGP, 
%=3H’ 0 

(2.2) 

is the ratio of the present-day energy-density po to the critical energy density required to 
produce a spatially-flat k = 0 universe. 

A. The Matter-Dominated (Dust) Phase 

In our cosmological model, the universe is assumed to pass through three =phases”, 
appropriate to a simple inflationary model. We let t = 0 denote the present time. The most 
recent phase was a matter-dominated period of expansion, described by the scale factor 

a(t) = Asin’(t/2 + B) 

Here the constants A, B, t, are defined by 

for t, < t < 0. (2.3) 
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A = &2&, - I)-“‘, 

During this matter-dominated phase, the stress-energy tensor is that of a perfect fluid, with 
zero pressure and an energy density proportional to u-“(t). We assume (as indicated in 
Table I) that the surface of last scattering is located within the matter-dominated phase. 
Thus, the time of last scattering, 

*~=2arcsin{~~-2srcsin~, 

is given by a formula identical in form r0 (2.4) for t,, and satisfies t, < f~ < 0. 

(2.5) 

B. The Radiation-Dominated Phase 

Preceding the matter-dominated phase of expansion is a radiation-dominated phase of 
expansion. During this phase the scale factor is 

a(t) = Csin(t + D) for taPd<t<&. (2.6) 

Hers the constants C, D, td are defined by 

c = $2p(n, - l)-‘(1 + ZJ’/‘, 

1arcsinJ~-arcsin/=, D=! and (2.7) 

k-L-1 
-2arc zsin Jv 

r ~n.-r 
t.&= + amin I/, ;T . Z - + arcsin 

\J 

u-b - 1)O + Zoo) 

V are v w4l+ 4 fIo(1 +znd)s * 

During this radiation-dominated phase of expansion the energy density is proportional to 
a-‘(t) and the pressure is equal to l/3 of the energy-density. This phase is preceded by a 

de Sitter phase. 

C. The Initial de Sitter (Inflationary) Phase 

In our coordinate system, the de Sitter (exponentially expanding, inflationary) phase has 
scale factor 

la(t) = 
E 

sin(t + F) 
for t < t&. 

Here the constants E and F are defined by 
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E = f$“(l+ Z,)“‘( 1 + .&I)-~, ad 

Note that the constant E c 0 because sin(t + F) < 0 during the de Sitter phase. During 
the de Sitter phase, the energy density is a constant 

(1 + .Gd)4 
,aaitk=;E-‘=po l+z 

3H,na (1+ zmd)4 
=- 

al 8XG 1+z, 
(2.10) 

and the (negative) pressure is -pwirtar. 

D. Proper&s of the Cosmological Model 

It may be easily verified that the scale factor and its derivative w.r.t. time t are both 
continuous, however the second derivative is discontinuous. This is because in our simple 
inflationary model, the energy-density is a continuous function but the pressure changes 
discontinuously at the beginning and end of the radiation-dominated epoch 

The de Sitter phase “begins” at early times when the time coordinate t approaches the 
value -x - F. At this early time the cosmological scale factor is very large (approaching 
infinity as t -+ --* - F). As the time coordinate increases, the scale factor decreases, 
eventually reaching a minimum value when t = tk = -r/2 - F. After this time, the 
scale factor begins to increases again (exponentiahy in physicsl time). One might find it 
reasonable to demand that the universe be expanding at time td when the inflationary 
phase ends. This is the case if and only if t =,t,, < ld, which implies that the free parameters 
given in Table I must satisfy the inequality 

p=3ipZi<,+z~. (2.11) 

It is also easy to determine the “amount” of inflation that takes place. The amount that 
the universe has expanded between time tk, when the spatial sections have their smallest 
extent, and time td, when the inflationary phase terminates and the radiation-dominated 
phase begins, is 

(2.12) 

Comparison with (2.11) shows the obvious - if the universe is expanding at the end of the 
de Sitter phase, then the amount of irJ3ationar-y expansion (2.12) is greater than unity. In 
typical inflationary models, the free parameters have values of order I& between 50 and 100 
Km/s-Mpc, Q+J < 2,100 < Zr, < 1!500,2 x 10s < Z, < 2 x lo’, and lOas < Z,. 

There is a sense in which the spatially-closed inflationary models are not UnaturaI.n One 
of the principal motivations which led to the development of the inflationary paradigm was 
the desire to solve the socaIled “horizon problem.” As we will now show, this problem is 
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only solved (for reasonable choices of the cosmological parameters) if & < 2. Thus, while 
it is technically consistent to use. the results obtained in this paper for any value of &, > 1, 
one must bear in mind that the cosmological model, for large values of S&, runs counter to 
the spirit of inflation. 

The horizon problem may be stated in term.3 of a set of points C, which is the intersection 
of the past horizon of an observer today with the surface of last scattering. The horizon 
problem is %olved” if C lies within the causal domain of influence of either (1) a point on 
the initial singularity, in a big bang model, or (2) a point on the surface at t = th where 
inflation Segins” , in a model with no initial singularity. Thus, in our model, which ia of 
type (2) the horizon problem is solved if and only if 

Ito - 4 < lb - Linl 
w (2.13) 

2 arcain /$$ - 4 arcsin &iiE+ -inJ~+ 2amin 

For reasonable cosmological models, the terms containing Zb, Z,, and Z, may be ne 
glected. The horizon problem is then solved if and only if 

arcsin 
G-1 x 

/- 
-CT M f&c<. 

Qo 
(2.14) 

While we present results for any value of f&n the cosmological model itself should be viewed 
with Borne suspicion if S& is much larger than unity. 

The final result of this paper are values of the dimension+ quantities 

Ml E (2.15) 

Here pp~pa is the Planck energy-density m- = g& ES 5 x 10gJ gm/cm3. It wilI turn out 
that Ml is independent of Ho, and depends only upon the dimensionleas quantities S&, 5, 
Z,, and Zd. This is because pat*, and (a:) are both proportional to z. In addition, 
if 24 is sufiiciently large then the Ml are also independent of its value. 

E. The Sachs-Wolfe Effect 

If the metric perturbation hij vanishes and the temperature of the CBR on the surface 
of last scattering is &niatant, an observer today would see exactly the name temperature at 
each point on the celestial sphere, and C(7) would vanish. However the metric perturbations 
will in general break the rotational symmetry and perturb the energy of the photons. This 
results in a temperature fluctuation which varies from point to point on the celestial sphere; 
the fluctuation may be. calculated in the same way M for a spatially-flat Universe, given in 
151. 

We assume that the observer is located at t = 0, and at “radial” coordinate x = 0. 
(Because the coordinate system is singular at x = 0 every value of 8, d corresponds to the 
same apace-time point at x = 0, 80 their values are irrelevant when x = 0.) If the observer 
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looks out at a point R on the celestial sphere, she observes photons that arrive, in the 
unperturbed metric, along the null geodesic path 

t(A) = x x(A) = IAl = -A e(x) = en 4(X) = h-l. (2.16) 

In these equations, 0o and & are the angular coordinates of the point R on the celestial 
twosphere. We have chosen the (non-a&e) parameter X along the null geodesic path to 
run through the range tL -< ), 2 0 between the time of last scattering and the observation 
today. 

In the presence of the metric perturbation hij the fractional temperature fluctuation 
observed at point fl on the celestial sphere is 

g(n) = -;p (~)(‘(X),x(X).e(~),K)o). 
As indicated in this formula, the partial derivative w.r.t. the time coordinate t is taken 
before setting the coordinates equal to the values which they take along the unperturbed 
null geodesic path. 

III. THE METRIC PERTURBATION OPERATOR 

The classical metric perturbation hij may be replaced with a quantum field operator. 
The justification for this is given in our detailed paper on the spatially-flat case [3] and 
will not be repeated here. The basic idea is that the inflationary epoch redshifts away all 
the perturbations, with the exception of the zeropoint quantum fluctuations. Hence we 
calculate the expectation value of F(fl)g(@) in th 
initial de Sitter state. 

e vacuum state 10) appropriate to the 

A. Mode function upauslon of Metric Perturbation Operator 

The quantum field operator (which we denote with the same symbol hij aa the cor- 
responding classical perturbation) may be expanded in terms of a complete set of mode 
functions. As was originally shown by Ford and Parker [S], in an FRW cosmological model, 
the time-dependence of these mode functions is the same as that of a massless minimally- 
coupled scalar field. The field operator is 

MC Xv e,+) = (3.1) 

z $,Z,, [ ~umn(WYm’(x~ 4 dhh + ti,(t)z$‘;um)(x, e,4)cL, 

+ !ha(t)pm) et, 4 d)hm + d4i,(ty@““)(x, e,4)dt,,]. 

In this ex ression, the sum is over a complete set of rank-two symmetric transverse traceless 
tensors TF”l. These tensor modes are defined on P a unit-radius sphere S3 and are given 
explicitly’iy Higuchi [7]. (Note however a typo [8] ’ m one of the formulae which doea not 
affect the results which we need.) Henceforth we will denote the triple sum that appears in 

7 



(3.1) by &,, without explicitly indicating the ranges of summation. (The temperature 2’ 
can always be distinguished from the tensor modes TL?‘l, since the latter is always written 
with indices.) 

The graviton has two possible polarization states, labeled J and v in this expansion, each 
of which has its own set of tensor modes. The modes are labeled by the three integers L, 
1, and m. (Note that Ford and Parker’s [S] index n = L + 1 in our notation.) Associated 
with the s-polarization modes are creation and annihilation operators CU.,, and CL,,,, and 
associated with the w-polarization modes are creation and annihilation operators du,,, and 

d:w The only non-vanishing commutation relation among this infinite set of operators is 
the relation 

I cum, &,11 = i&m, dz~p,J = ILL&&,. 

where 6 denotes the Kronecker delta function. 

(3.2) 

B. The Transverse-Traceless-Symmetric Tensor Harmonics 

The tensor modes defined by Higuchi [7] obey the normalization condition 

l dx sin’ ,yl dtl sin Bl’* d~~~m)T!;p’jC’l’m’)PirPj~ = 6~~~6~~,6,,~6,,,,~. (3.3) 

Here, the polarization indices p and p’ take on either of the values “8” or “v”. The integral 
is over the unit-radius three-sphere, and P” is the inverse of the metric on the unit-radius 
three-sphere: 

Pijdz’dZi = dXa + sir? x(dO’ + sin’ Od&). (3.4) 

Note that the meaSure that appears in the normalization integral (3.3) is the usual volume 
element defined by m. The Sachs-W lf o e effect (2.17) is produced only by the xx 
component of hij. Because Tg*“‘) E 0, only the “s” polarization state contributes to the 
temperature fluctuation. The onIy component needed is thus 

T$f%, 4 4 = %(x)w, d). (3.5) 

The K,,,(e, 4) are standard scalar spherical harmonic functions on the twosphere [9]. The 
‘radial” dependence is given by 

u- 1YU + 1)U + 2)(L + l)(L + I + l)! 
2L(L + 1)2(L +2)(&C - I)! 

(sin x)-s/s PEJ’$l(cos x), (3.6) 

where the functions P-(‘+“sl Le,,s (2) are msociated Legendre functions [9]. In Section V we 
explain how these functions may be easily evaluated. 
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C. Normalization Condition for Wavefunctioas 

The quantum field operator hij obeys canonical commutation relations which can be 
derived from the quadratic part of the gravitational action. We have already specified the 
normalization of the creation/annihilation operators (3.2) and of the spatial part of the 
mode functions (3.3). The commutation relations for h<j then determines the normalization 
of the time part +u,,,(t) of the graviton wavefunctions. The details of this procedure are 
given in [S] and yield a normalization condition 

~um(t&~,(t) -&(t)-+(t) = =rfiGa-‘(t). (3.7) 

(Note that the normalization condition given in equation (3.3) of Ford and Parker [6] contains 
a minor typo [lo].) 

D. Choice Of An Initial (Vacuum) State 

If one defines a Fock vacuum state by the property that it is annihilated by all of the 
operators CL.,,,, and du,, then the choice of vacuum state is really determined by the choice 
of the mode functions +u,,,(t). For the reasons given in [3] we choose these mode functions 
to be those which correspond to the unique de Sitter invariant vacuum state 10) during the 
initial inflationary stage whose twopoint function has Hadamard form. 

E. Wavefunction During The De Sitter Pham 

As shown in equation (2.18) of Ford and Parker [6] the mode functions obey the 
minimally-coupled ma&se scalar wave equation 

[g + i$$ + L(L +2+(t) = 0. 

There is a slight subtlety: it is impossible to define a de Sitter invariant Fock vacuum state for 
the minimally-coupled massless scalar field [ll]. However it was shown by Allen and Folacci 
[12] that the difficulty only arises for the L = 0 mode. In the case of the gravitational field 
operator, the L = 0 and the L = 1 modes are both absent; they correspond to amonopole” 
and “dipole” dynamical degrees of freedom which are not present in the spin-two csse. Hence 
in the case of the gravitational field. it is possible to define the desired de Sitter invariant 
vacuum state. Th; corresponding normal&d wavefunction during 
[2,7,11-141 

tiUm(t) = h,(t) = i/x(i(L + 1) - i$)eifLcl)* 

the de Sitter phase is 

for t < &.d. (3.9) 

We note in passing that this time-dependent part of the wavefunction depends only upon 
2, and not upon J and m. (This guarantees that the vacuum state will be invariant under 
all rotations of the three-sphere t = constant, which is the subgroup SO(4) of the de Sitter 
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group SO(1,4)e. However the invariance of the state under the de Sitter group S#(1,4)a 
is not obvious from inspection. Here the subscript on S0(1,4) denotes the part of the 
group connected to the identity.) For this reason, from this point on we drop the indices 
I,m from the time-dependent part of the wavefunction, denoting q& by $n. Because 
the wave equation (3.8) is a second-order ODE, the solution $L(t) during the de Sitter 
phase completely determines the solution at all later times. The solution at later times is 
conveniently written in terms of Bogoliubov coefficients. 

F. Wavefunction During The Radiation-Dominated Phase 

The epoch that follows the de Sitter epoch is the radiation-dominated phase. One may 
write the solution to the wave equation during this phase ss 

$L(t) = a~‘$~d(t) + FLmd$zd(t) for td < t < t,. (3.10) 

Here, the positive frequency mode during the radiation epoch is defined by 

l tot”d(t) = ; 16*hG 
\I (L + l)e -w+w for td < t < t,. 

The Flogoliubov coefficients are determined by a condition which follows from the wave 
equation (3.8): both +L(t) and its time derivative must be continuous at all times, and in 
particular at t = td. One obtains 

ard = (L(L + 2))-‘/‘(i(L + 1) + JQ7-1- 2tjy 1,) 

BILod= &,+ I)-‘(yr, + 2))-11zQe-1i(Gtl)+.d. 

Here Q is the constant delined by 

f&(1 + &d)2 
Q = (00 - l)(l + Z,)’ 

(3.12) 

(3.13) 

We stress once again that the solution &(t) during the de Sitter phase completely determines 
the solution at all later timw. In other ,words the choice of a “positive-frequency” mode 
function during the radiation phase is un~naportant. Had we picked a different solution to 
the wave equation (3.8) to call “positive frequency” then ard and pLod would have changed 
in such a way as to keep the mode function $L(t) given in (3.10) unchanged. In similar 
fashion, the solution of the wave equation during the radiation phase completely determines 
its solution during the matter-dominated phase. 

G. Wavefunction During The Matter-Dominated Phase 

The wavefunction during the matter-dominated (dust) phase may again be expressed as 
a linear combination of the natural positive-frequency solution and its complex conjugate: 
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$L(f) = aL+y(t) + BLvy’ for t, < t < 0. (3.14) 

The poeitive frequency mode functions during the matter epoch are 

tjy*(t) = J-/(L++ + 1) + ~$)e++l)’ for t, < t < 0. 

(3.15) 

The Bogoliubov coefficients CXL and Br, are determined (aa in the spatially flat case [3]) by 
combining the Bogoliubov coefficients for the two different phases. 

(g $)=(;; g-y; g-* (3.16) 

As previously, the Bogoliubov coefficients ayr and E’ are determined by matching the 
positive frequency radiation mode function $Ld(l) to the linear combination ~~‘$~~‘mot(t) + 
~‘$;mac at time t,. One obtains 

ayt = ((2L + 1)(2L + 3))-‘I’(-2i(L + 1) + m+ 4(iT 1)) 

pp = ;(L + 1)-‘((2L + 1)(2L + 3))-“%Ve-++‘)+. 

(3.17) 

Here the constant W is given by 

(3.18) 

We are now in a position to evaluate the multipole moments (a:) of the angular correlation 
function C(7). 

IV. MULTIPOLE MOMENTS OF C(7) 

Combining the results of the previous section, one can easily obtain a formula for the 
multipole moments of the angular correlation function C(r). One replaces the metric per- 
turbation that appears in the Sachs-Wolfe formula (2.17) with expansion (3.1) of the field 
operator. The resulting operator dependa upon an angle fl on the celestial sphere. One then 
takes the expectation value of this operator with an identical operator at a different point 
0’ on the celestial sphere. This yields the correlation function 

C(7) = (olQ(R)g(njo) = (4.1) 

i /p. df Ip, & Cum Cf,‘P ~‘~~(t)~~(f’)~(lfl)~.(It~l)~~(~)’r;:,.(~~)(OIcrr,cl,.,.~). 

Here 7 is the angle between the points 0 and n’ on the celestial sphere. Because the Sachs- 
Wolfe formula (2.17) involves the time-derivative of the mode function, we have defined 
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&L(t) E &r,(r)/&, where +L is the mode function during the matter-dominated epoch, 
given in (3.14). 

To simplify this expression, first note that the matrix element 0 c~,,,c$,+,, 0 

6~~&6,,,,,,~. This eliminates the triple EM &r+. Because the su 
(I I> 

= 

mmand is indepen- 
dent of the summation index m, one may then explicitly carry out the sum over m using 
the addition formula for spherical harmonics, equation (3.62) of reference [15]: 

m~~,Km(n)~w’) = yPl(cm 7). 

Because the argument of the Legendre function P,(z) is the cosine of the angle 7 between 
the points on the celestial sphere, this shows explicitly that the correlation function depends 
only upon 7. 

c(7)= zEaE 4* 
’ - ’ ~~(~7)~d~~dt’~~(~)~l(t’)d,(I~l)~(l~’l) (4.3) 

Comparing this to the definition of the multipole moments (l.l), and noting that the sum- 
mation E’s& is equivalent to the summation ~zaC&, one immediately obtains a 
simple formula for the multipole moment, 

(a;) = f g L dt l dtfl&)tt;(t’)R’L( It I)&( It’l) = ; z, I&, + hIi*?. (4.4) 

The complex quantity Zt is what remains of the integral of the mode function along the 
radial null geodesic path. 

Z; E 1* dtR”(&b~‘(t) 
P 

Note that we have assumed (as is implied in Table I) that the surface of last scattering lies 
within the matter-dominated epoch; the positive frequency mode function during the matter 
phase is given by (3.15). The Bolgoliubov coefficients are given by (3.16) 

aL = ardayt + ~;d&“‘at and pL = aTdpr’ + &‘-da;mo*, 

where the Bolgoliubov coe5cients for the matter and radiation transitions are defined by 
(3.17) and (3.12). In the next section, we discuss how the multipole moments (a:) may be 
rapidly evaluated using numerical techniques. 

V. NUMERICAL EVALUATION OF THE MULTIPOLE MOMENTS 

As discussed at the end of Section II, it is convenient to define dimensionless quantities 
MI E zv(af). Using th e p revious formulae one may write this in the dimensionless 
form 
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M,=32r”I(I+l) l+Z, 
3 6 (1 + Zd)’ L(L + ll)(L + 2) la& + ““‘]r’ (5.1) 

where 

Ji E /p dfR’,(lfl) c9c2(t/2 + B)e-i(L+‘)’ x 

-3i(L + 1) mt(f/2 + B) - ; cnc’(t/2 + B) + 2P + 4L + l)]. 

(5.2) 

Taken together with the definitions of aL and /?r. given (4.6), (3.17), and (3.12), the constants 
Q and W defined in (3.13) and (3.18), and the radial f unc Ion R”(x) defined in (3.6) this is t’ 
a self-contained formula for calculating MI. 

Before diacuming the evaluation of Mr in general, it is worth commenting on two limits. 
The first limit is the Z .md + 00 c+e, where the amount of intlation is large. In this case, 
it is easy to see that Q and hence QL and Br, diverge o( (1 + Z-d)‘. Thus in the limit, 
Mi converges. A second interesting limit is the spatially-flat one, fl,, - 1 + O+, where the 
density parameter approaches unity from above. In this case, it is easy to see that Q and 
hence QL and ,Vr. diverge as (f& - 1)-l, and the integral .Ij, diverges a8 (fl,, - 1)-r/r. Once 
again, the limit is well-defined. In addition, in this case, the sum over L can be m-written 
as an integral, recovering the k = 0 spatially-fiat formula given in [3]. 

We evaluated Ml using an fourth-order Runge-Kutta adaptive stepsize integrator [16] to 
obtain the integral which defines JL. In casea of interest, one frequently needs to include 
many valuea of L in the summation. In practice we found that summing over the range 
L~l,l+l,...,l,,withI,.= 32+ (51+ lO)/lfr,I gave results accurate to a few percent for 
reasonable ranges of the free parameters listed in Table I. Rather than compute the Jt one 
at a time, it is more practical to compute them Uen masse”, determining J:, J,!+,, . . . , J,‘, 
simult~eously. This can be done easily because the associated Legendre functions may be 
computed with a stable upwards recursion relation. 

A. Second-Order Recursion Relations 

The upwards recursion relation for the associated Legendre functions is given in equation 
(8.731.2) of reference (171. 

cz::‘(4 = ,;‘:;$ zP$!f:;i:;,,r(*) + 2, :; ‘+ 1 p&r&&) for j=2,3,..., 

(5.3) 

together with the boundary conditions (or initial vaiues) given in equation (8.755.1) of 
reference [17]: 

p,~-Q;;/a 1 
(u)8 ‘) = I-( I + 3/2) 

and P&($;‘rI(z) = .P;,‘;;;“‘(z). (5.4) 

These relations may be used to obtain a recursion relation and initial values for the radial 
functions f?=. The initial values are 
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&xl = ,/~binxlfl’-’ and fi+,(x) = cmx/~Z$(x) (5.5) 

and the recursion relation is obtained from (5.3) 

for j =2,3,-a* @+j(x) = (5.6) 

l/m cos xR1+j-l(X) - lJ 
‘-l)(fr+j)(l+j-l)(l+j-Z~~+j-~~x~ 

j(ll+J+l)(l+j+l)(r+j+1) 
. 

Although this recursion relation does not appear to be stable, our experience ha beerr that 
it accurately determines tiL for 15 L 5 I+ 6ooo. 

VI. NUMERICAL RESULTS AND CONCLUSIONS 

The numerical results are 
the values of MJ s - I& 

resented as a series of graphs Figs. 1, 2, and 3 showing 
(a:). For all of these graphs, we have taken Zd = 10S 

Z, = 10’ and Zu = ?ean”d varied the density parameter 0.o. The graphs also show thd 
values of MI for the spatially-flat k = 0 case, taken from [3]. This case corresponds to the 
critically-bound f& ---) 1 limit. 

It is clear from the figures that this limit is quickly approached; when &, = 1.1 the M, 
are almost indistinguishable from the k = 0 spatially-flat case. It is not hard to see why. 
The effects of the spatial curvature only appear if the past light cone of the observer, taken 
back to the surface of last scattering, actually “probes” a substantial fraction of the spatial 
three-sphere. If the past light cone fails to do this, then within the past light cone the 
universe is indistinguishable (to good approximation) from a spatially-flat model. 

The fraction of the threcsphere (Ss) within this past light cone is easy to determine. 
The thr~volume contained within an le xrvr from the point x = 0 of the unit-radius S3 
may be obtained by integrating 

V(xmJ = “(2X- - 
e- det P+ where P+ is the three-metric (3.4). One obtains 

sin 2x-). The total volume of S3 is V(r) = 2x2. If we assume that 
Zr. is much larger than one, then the fraction of the volume of Ss contained within the past 
light cone is approximately 

(6.1) 

For Cks near 1, this fraction is well-appoximated by 

me) = g(% - 1Y. (6.2) 

Thus when 0,~ = 1.1 the past light cone only explores about l/l000 of the spatial volume. 
Even if sl, = 2 the fraction of the three-sphere that is observed is only f(f& = 2) = 5 - e z 
0.1955.. e. This is why the multipole moments are not very sensitive to f& provided it is 
close to unity. 

The extension of this calculation to the case of a spatially open FRW universe appears 
straightforward. However it turns out to be much more difficult than expected, primarily 
because the correct choice of initial state is not the obvious one, and because the final result 
for the multipole moments appears to contain logarithmic (h&a-red) divergences at zero 
frequency. The spatially open case will be the subject of a forthcoming paper. 
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FIGURES 

FIG. 1. The normalized multipole moments Ml P av(of) of the CBR temperature Pd.SIIU. 
fluctuations are shown aa a function of the multipole number I, for a spatially-flat (f& = 1) and for 
spatially-closed (% > 1) conmological models. S2c - 1 needs to be fairly large for the effects of the 
spatial cwature to be significant. The models being compared all have cosmological parameters 
defined by the redsbifts & = 1300, 2, = 10’ and Zd = 10%. 

FIG. 2. The normalized multipole moments MI E =v(af) are shown as a function 
of f& - 1 for 1 = 2,5,10,20,30,50. In all cases, the models being compared have the same 
cosmological parameters OS in Fig. 1. Only when i& becomes signScantly larger than one do the 
multipole moments change significantly from the spatially-flat case. 

FIG. 3. The normalized multipole moments MI s =?(a:) are shown p8 a function of 
& - 1 for 1 = 100,200,400. In all catwa, the models being compared have the same cosmological 
parameters aa in Figs. 1 and 2. Only when I& becomes significantly larger than one do the multipole 
moments change significantly from the spatially-flat case. 
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TABLES 

TABLE I. List of the free parameters that define the cosmological model. 

Parameter units R-53 Description 
6 length-’ Ho > 0 P-t-day Hubble expansion rate 
n, dimensionless %>I Present-day density parameter 
zb dimensiordes6 zb > 0 Redshift at last scattering of CBR 

Z-4 dimensionless z,>-% Redsbift at equal matter/radiation energy density 
GUd dimeneionlesa zmd>z, Redshift at end of de Sitter inflation 
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